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ON THE CONSTRUCTION OF MINIMAL 
SKEW PRODUCTS 

BY 

S. GLASNER AND B. WEISS 

ABSTRACT 

It is shown that under fairly general conditions on a compact metric space Y 
there are minimal homeomorphisms on Z • Y of the form (z, y ) -*  (02, hz (y)) 
where (Z, ~r) is an arbitrary metric minimal flow and z --* h, is a continuous map 
from Z to the space of homeomorphisms of Y. Similar results are obtained for 
strict ergodicity, topological weak mixing and some relativized concepts. 

1. Introduction and statement of results 

Using an idea due to Anosov and exploited by A. B. Katok [1], and by A. 

Fathi and M. Herman [4], we show that under fairly general conditions on a 

compact metric space Y, there are minimal homeomorphisms on X = Z x Y, of 

the form (z,y)--~(~rz, hz(y)), i.e. skew products with tr. Here (Z, tr) is an 

arbitrary compact metric minimal flow and z --> h, is a continuous map from Z 

to the space of homeomorphisms of Y. 

In particular as we shall see, the Hilbert cube satisfies the condition required 

of Y, and thus we answer a question listed in [2]. Similar results about unique 

ergodicity, topological weak mixing, relative topological weak mixing and 

relative proximality are established. 

For related results see [3], [9], [5], [7], [8], [6]. We repeat now the basic 

definitions and establish the notation that will be in force. 

Let q3 be a topological group and let Y be a compact space. If ~ acts on Y as a 

group of homeomorphisms and the action is jointly continuous we call the 

couple (Y, (g) a flow. If ~ is generated by a single element T we write (Y, T) 

instead of (Y, ~). A flow (Y, (g) is called topologically ergodic if given two 

non-empty open subsets U and V of Y, there exists g E (g such that gU n 
v ~ o .  (Y, ~)  is topologically weakly mixing if ( Y x  Y, (g) is topologically 
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ergodic. (Y, ~)  is minimal if C~y is 

(Y, ~)  is minimal iff {gU: g �9 cg} is a 

open subset of Y. 

A flow (Y, ~)  is uniquely ergodic 

dense in Y for each y �9 Y, equivalently 

covering of Y, whenever U is a non-empty 

if there is one and only one c~-invariant 

Borel probability measure on Y. It is called strictly ergodic if in addition this 

unique invariant measure is positive on every non-empty open subset of Y. Since 

the support of an invariant measure is a closed invariant subset, strict ergodicity 

follows from unique ergodicity plus minimality. When ~d is generated by a single 

homeomorphism T, then (Y, T) is uniquely ergodic itt (1/(n + 1))E~=of(Tkx) 
converges uniformly to a constant, for every continuous function f on Y. A pair 

of points yl, yE �9  Y is called proximal if for every neighbourhood V of the 

diagonal in Y x  Y there exists g �9 ~ such that g(yl, y2 ) �9  V. 

Let (Z, ~)  be another flow and let ~b: Z---* Y be a continuous onto map such 

that for every z �9 Z and g �9 c~ ck(gz) = gck(z). Then (Z, ~d) is an extension of 

(Y, ~). Let 

L = { ( z l ,  �9 X • Z :  4 , ( z , )  = 4 , ( z : ) } ;  

the extension is called topologically weak mixing if (L, ~d) is topologically 

ergodic. The extension is called proximal if (z~,z2)�9 L implies zl and z2 are 

proximal. 

When the group ~d of the flow is the group of reals (denoted by R) we say that 

the flow is real. T denotes the one torus (considered as the group of reals modulo 

the integers). I = [0, 1] is the unit interval and A denotes Lebesgue measure on I. 

The letter d will denote a metric on each of the metric spaces under considera- 

tion. N denotes the set of natural numbers. Q is the Hilbert cube i.e. Q = I N 

equipped with the metric d(x, y) = Y~,=l Ix, - y, I/2'. 

Whenever M is a compact metric space ~ ( M )  will denote the space of all 

homeomorphisms of M equipped with the metric 

d(g, h) = Sup d(g(m ), h(m )) + Sup d(g-l(m ), h-l(m )). 
r n E M  r a E M  

With this metric ~ ( M )  is a complete metric space and a topological group. 

Let (Z, tr) be a compact metric minimal infinite flow, let Y be a compact 

metric space and let X = Z x Y. We consider the subspace ~7(tr) C ~ ( X )  where 

= {o-' o o o e 

(Here g is identified with cr x id, where id is the identity map on Y.) Let ~ ,  (X) 

be the subgroup of ~ ( X )  which consists of homr which fixes all 
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subspaces of X of the form {z} x Y (z E Z).  Such a homeomorphism G is 

determined by a continuous map z ~ gz of Z into ~ ( Y ) ,  by G(z, y) = (z, gz(y)). 

Put 

,7'(o,) = {G-'oo` o G: G ~ ~,(X)}. 

If ~ is a subgroup of ~ ( Y ) ,  let ~, C ~ , ( X )  be the subgroup of those elements of 

Yfs(X) which come from continuous maps z ~ g z  of Z into ~. Put 

S~ G E ~,}. 

We now state our results which will be proven in the subsequent sections. 

Some remarks and examples follow the statement of each theorem. 

THEOREM 1. Let ~ be a subgroup of gg(Y) which is pathwise connected and 
such that ( Y, c~) is a minimal flow. Then for a residual subset Yt C 5e~ (o`), (X, T) is 

a minimal flow for every T E fit. A similar statement holds for 6(o,) instead of 
~e~ ( o, ). 

We notice that the elements of 5e~ (o`) are limits of transformations of X of the 

form 

(z, y)--)(o`z,g~g~(y)), 

where {gz}z~z C qd. Thus an element T E 5r (o`) has the form (z, y)--~ (o`z, hz(y)) 

where z ~ hz is a continuous map of Z into c~. In particular when ~ is a compact 

abelian group the minimal flows obtained will be group extensions of (Z, o`). 

Let (Z,o`) be an arbitrary minimal compact metric infinite flow and let 

Y = M" be a compact connected n-dimensional manifold. Then it is clear that 

the identity path component c~ of ~ ( M " )  acts transitively on M" and Theorem 1 

applies. More generally let Q be the Hilbert cube and let M be any compact 

connected Q-manifold. By [2, theorem 19.4] the identity path component q3 of 

~ ( M )  acts transitively on M, and again we can apply Theorem 1 to obtain a 

minimal flow on Z x M .  In particular when (Z, O )̀ = (T, R~ ), an irrational 

rotation of the circle, we have a minimal homeomorphism on T x M. This 

answers one of the open problems listed in [2]. 

Finally let (Y, R) be any minimal metric real flow. Then clearly the conditions 

in Theorem 1 are satisfied for (~ = R C ~ ( Y ) .  

THEOREM 2. Let (Z, o`) be a strictly ergodic infinite metric flow ; let ~ be a 
pathwise connected subgroup of ~ ( Y)  with either one of the following properties: 

(A) There exists a basis all for open sets in Y such that for every U E all and e > 0 
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there are homeomorphisms h~,... ,  hM in ~ such that 

1 M 
e, 

for all y E Y. (lo is the characteristic function of the subset D.) 

03) ~ is a compact group acting transitively on Y and as a topological space it is 

a continuous image of the unit interval, i.e., a Peano space. 

Then for a residual subset ~ C 5f, (tr), (X, T) is strictly ergodic for every T E ~t. 

Let us consider more closely the condition (A). Suppose that our flow (Y, q3) is 

such that for every M E N and every U E 0// there are homeomorphisms 

h~, h2,- " ,  hM E q3 for which {hj(Y\U)}~1 is a family of pairwise disjoint subsets. 

(This is for example the case when we let Y = P', the projective line, and 

(~ = SL(2, R); or when Y = Q and @ is the path component of the identity in 

~(Q)) .  Then clearly condition (A) is satisfied. However, when Y = P*, the 

projective n-space, @ = SL(n + 1, R) and n _-> 2, this stronger condition is not 

satisfied while condition (A) still holds. 

To see this we observe that the complement of a small neighbourhood of a 

point in P" can be squeezed, by an element of @, to a small neighbourhood of an 

n - 1 dimensional hyperplane, and the intersection of any n + 1 such hyperp- 

lanes in a general position is empty. 

Choosing e = �89 and U E 0-//we see that for every y E Y, y E Ui~_~hj(U). Thus 

condition (A) implies the minimality of (Y, qd). 

THEOREM 3. Let ~ be a pathwise connected subgroup of ~ ( Y )  with the 
following property : for every pair of points y,, y2 E Y there exist neighbourhoods U 
and V of y~ and y2 respectioely, such that for every e > 0 there exists h E ~ with 
diam (h (V U U)) < e. Then for a residual subset ~ C 5e~(tr), (X, T) is a proximal 

extension of (Z, tr), for every T E ~. 

THEOREM 4. Let ~ be a pathwise connected subgroup of ~ ( Y )  such that 

(Y, ~d) is topologically weak mixing. Then for a residual subset ~ C 5P~(tr), (X, T) 

is a topologically weak mixing extension of (Z, tr) for every T E ~t. 

Let (Y,~3) be (P ' ,SL(n+I ,R) )  or (Q,@) where @ is the identity path 

component of ~ ( Q ) .  Then it is easy to check that the condition in Theorem 3 

holds. Clearly the action of SL(n + 1, R) on P" is doubly transitive and by [2, 

Theorem 19.4] this is also true for the action of ~ on Q. In particular in both 

cases (Y, @) is topologically weak mixing. Thus for an arbitrary minimal infinite 

metric flow (Z, tr), there are many minimal homeomorphisms of Z x Y, where 
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y = pn or Q, which are minimal, strictly ergodic, weakly mixing and proximal 

extensions of (Z, tr). 

In particular if we let (Z, ~)  = (T, Ra), an irrational rotation of the circle, and 

(Y, ~g) = (P~, SL(2, R)), then since pl is homeomorphic to T, we obtain a minimal 

flow on the torus T 2, which is a proximal extension of (T, R~), and is not an 

almost one to one extension. This answers a question of H. Furstenberg about 
the existence of such flows. (See also [8] and [5].) 

THEOREM 5. Let Z = T and tr = Ra an irrational rotation. Let ~ be the identity 

path component of ~ ( Y )  and assume that Y does not reduce to a single point and 

that ( Y, ~) is topologically ergodic. Then for a residual subset 9~ C ~7(o'), (X, T) is 

topologically weak mixing for every T E ~. 

Unlike the previous theorems, the topologically weakly mixing homeomorph- 

isms, whose existence is stated in Theorem 5, can not be skew products of X 

over (T, R~), since a topologically weak mixing flow can not admit a non-trivial 

equicontinuous factor. It is interesting to notice, however, that these topologi- 

cally weak mixing homeomorphisms are elements of ~'(Ra), i.e. they are the 

uniform limits of conjugations of Ra by homeomorphisms of X. 

Since the action of the identity path component (g, of ~ ( M )  - -  where M is a 

connected compact n-dimensional or a Hilbert cube manifold - -  is transitive on 

M, (M, (g) is a fortiori topologically ergodic and our theorem can be applied to 
T x M .  

We do not know whether Theorem 5 can be generalized to an arbitrary 

minimal, infinite, metric flow (Z, tr). The proofs of Theorems 1-5 will now be 

given. Their structure is very similar, in all cases a translation of the hypotheses 
and conclusions reduces the proof to the construction of maps satisfying quite 

specific properties. We have refrained from the temptation to find some master 

theorem that would contain these results as special cases - -  the price we pay is a 

certain unavoidable repetition in the arguments. 

2. Minimality 

A PROOF OF THEOREM 1. Let U be a non-empty open subset of X. As in [4] 

denote 

Clearly Eu  is an open subset of ~ ( o - ) .  If {U~} is a countable basis for open sets 
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in X then 0~ = f'l Eu, consists precisely of the minimal elements of .9~ We 

now show that Eu is dense in ~,(cr) ,  and then the Baire theorem will complete 

the proof. 

Let G E ~,, then 

G E u G  -~ = {G o T o G-~: T E Eu} 

= Eou .  

Since ~ ( X )  is a topological group we have G E u G  -1 = Eou. 

In order to prove that Eo is dense it suffices to show that for every G E (~,, 

G -1 o tro G E Ev,  or equivalently that tr E G E u G  -1 = Eo-,u. Since G and U are 

arbitrary all we have to show is that cr E Eu. This will follow from the following 

lemma. 

2.1. LEMMA. Given e > 0 there exists G E ~, such that 

(I) d(cr, G-',,o'oG)<e, 
(2) G - ' o t r o G  E E o .  

PROOF. Let W C Z  and V C Y  be two non-empty open sets such that 

W x V C U. Since (Y, (~) is minimal there is a finite subset {ho, h~/,, �9 �9 h,_~/,} C 

(g such that 0 " - 1  _ ~-o h ~ / , V - Y .  Let t - * h ,  be an extension to a continuous 

function from I to ~. There exists 8 > 0  such that I t , - t 2 1 < 8  implies 

d(h?,~h~, i d ) <  e. Let m E N satisfy 2/m < 8. Next we choose an open subset 

A C W such that A, o'A, �9 �9 trm-lA are pairwise disjoint (here we use the fact 

that (Z, o-) is infinite). Let K be a subset of A which is homeomorphic  to a 
r a - - I  i 

Cantor set, and let/J: K ~ I be a continuous onto map. Define ~J on U ~-0 tr K 

by 

0(z)  = / J ( t r - ' z )  if z E tr'K. 

Now extend 0 to a continuous map ~J: Z---) L Finally we define O: Z--* I by 

m - - 1  

o(z) = Z 
m i - 0  

Clearly OIK = OIK and this implies that 0 maps W onto I. Let g: Z ~ O  be 

defined by g, = hoc,~ and put G(z ,  y)  = (z, g,(y)).  We claim that G satisfies both 

(1) and (2). For  (z, y ) E  X 
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G- 'o  o-o G(z,  y) = (o'z, g?,~g~ (y)) 

= (o-z, h ~,,~)ho(z)(y)). 

But 

I o(o-z)- o(z)l = Z<m 8. 

Hence d (g ~gz (y ), y) < e and therefore d ( O -~ o o- o G, o- ) < e. 

To see (2) it suffices to show that 1,3 ,=oo-~GU = X. Now the set G U  has the 

following property: for each y E Y  G U N Z x { y } ~ O .  In fact since 

1,3 ~o"-~ h~/,V = Y there exists an i such that y ~ h , . V  and if we choose z 6 W 

for which O(z)= i/n we have 

G - ' ( z , y )  = (z, h?~',(y))~ W •  VC U. 

The minimality of (Z, o-) implies that for every y E Y there exists k for which 

Z x { y } C G U U o - G U . . .  UO-~GU, 

hence I,.,I 7.oo-~GU = X and the proof of the lemma is complete. The proof for 

r is analogous and this completes the proof of Theorem 1. 

3. Unique ergodicity 

A PROOF OF THEOREM 2. For f e C ( X )  and e > 0 let 

II 1 II} Et.= 
k - O  

Clearly Er,. is open and it is easy to check that ~ = I"l~,jE1~o, where {~} is a 

countable dense subset of C(X) ,  consists precisely of the uniquely ergodic 

transformations in ~(o- ) .  Thus all we have to show is that for arbitrary f and 

e > O, E t,  is dense. Now let H 6 ~s then 

H-l  o o- oH e E t, r ~ e HEt---~H -1 r o- e Er.n,,. 

Thus as in the proof of Theorem 1 it suffices to show that for all e > 0 and 

continuous functions f, o- E E t, .  We formulate this as 

3.1. LEMMA. Given 8 > 0 there exists G 6 ~s such that 

(1) d(o-,G-'oo-oG)<8, 
(2) O- 'oo-oG E Et, .  
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Observe first that if G E @, corresponds to the continuous map z ~ gz of Z 

into Q3 then 

1 " 1 " 
~=o f ( G - '  oct ~ o G(zo, yo)) = - n - ~  ~o f(~176 g?'L'~176176 n + l  = = 

The strict ergodicity of (Z, or) implies that for all yo and z0 this expression tends 

to 

f f ( z ,  g ~-'(g~(yo))do (z), 

where ~ is the unique invariant measure on Z. Since the family of functions 

{Fczo, yo)}Czo, yo)~Z• v where 

F~o. yo: z ~ f(z,  g;~(g~o(Yo)), 

is compact the above convergence is uniform in Xo = (Zo, yo)E X. 

Thus in order to prove the existence of G as in the lemma, it suffices to show 

that there exists a continuous map z --* gz of Z into ~3 such that (1) holds and in 

addition for some constant c, 

[f f(z,g;'(y))dt~(z)-cl<e, r y e  Y. 

We assume first that (Y, ~ )  has property (A). 

Let V #  0 be an open subset of Y such that for every v, v ' E  V 

3.2. LEMMA. 

y ~ Y  

PaooF. 

Sup I f (z ,  v)  - f ( z ,  v')l  < ~/5. 
z 

There exists a continuous map t --~ h, of I into ~ such that for all 

A{t: h;-~(y)~ Y \ V } <  lOllf ]]- y" 

Let /~1,/t2, �9 �9 ",/zM ~ (~ satisfy the condition 

X 4 

Define h, =/~i for (i - 1)/M + 1/M 2 <- t <- i / M  - 1/M 2 (1 _-< i _-< M) and extend 

the map t--~ h, continuously to all of I. 

If yt~ U ~ , / z , (Y\V)  then for every 



Vol. 34, 1979 MINIMAL SKEW PRODUCTS 

M 

t ~ U [(i - 1)/M + 1/M ~, i /M-  1/M21, 
i = l  

h71(y) I~ Y\V  and 

1 2 2~ A{t: hT~(y)E Y\V}<-_2M"~=-~< <% 

If y E N ~j=~/~, (Y\ V) then 

1 ~ l~.(vw)(y) 1 y 
Mk-1 = M < 2  

and 

329 

In fact 

If [(z'g71(Y))dlz(z)- f f(z'~176 <e 

I 

This proves Lemma 3.2. 

PROOF or  LEr~vtA 3.1. We can now proceed with the construction of G. Let 

7 / > 0  be such that It,-t2l<rt implies d(h~lh,=,id)<8 and let N E N  with 

1/N < rain (r//2, y). 

There exists a measurable subset A of Z with / x ( A ) > 0 ,  such that A, 

o.N~-IA i rA, - . . ,  are pairwise disjoint and such that 1 - ~ ( I,.J ~2o I tr 'A ) <  3'. Let 

K CA be a closed subset homeomorphic to a Cantor set, for which/z (A\K)< 
y/N 2. Let 0: K---*I be a continuous onto map for which 

Define 0 on 1,3 ~2o ~ o'~K by 

0(z) = 0(tr- 'z) if z ~ tr 'K (i = 1 , . .  ", N 2 -  1) 

and extend it to a continuous map /~: Z ~ / .  Finally put 

1 N-1  

O(z) = ~ ~ 0(tr 'z) and gz = h,(z). 

Thus G(z, y) = (z, gz(y)) = (z, hs(z)(y)). 

Let v0 E V; we claim that for every y E Y 
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f lf(z,g;~(y)) f(z, vo)dtz(z) I 

<_e__+ [ ~ I f (z ,g: ' (y))- f (z ,  vo)ldt~(z) - 5  3U~:o',,'A 

<=5 + f N -ffr-~.5+ U ,~.~',~'r If(z 'g;~(Y))-f(z'  Vo)] d~(z) 

~ +  Nt~ (K)2II f II + fuTs ,,Klf(z, g2'(y)) - f(z, vo)t d~(z) 

2e N2--N- 1 ~K 
= T +  N ,(K)211flI+ If(o"z,h;~,.,~(y))-f(o"Z, Vo)ldtz(z). i=0 

Now for z E K and 0 =< i =< N 2 -  N - 1, O(o'~z) = 0(z), also for z E K for which 

h ~z~(y)li~ Y\ V the integrand is - e/5, and we conclude that the last line above 
is 

_-< ~ + N/~ (K)211 f II + ( N2 - N - 1)211 f I1~ {z ~ K:  ~,,(y) ~ Y\ v} + e/5. 

But 

lt{z E K: h~Iz)(y)E Y\V}  = h{t ~ I: h?'(y)E Y\V} . / z  (K) < y . /~  (K). 

If we recall that / z ( K ) <  1/N 2 and that y = e/lO]]f]], we finally have for every 
y ~ Y  

This shows that G satisfies (2). In order to show that it satisfies (1) we observe 

th at I 0 (o'z) - 0 (z)l <= 2IN < ~/. It follows that d (g JR,, id) = d (h ;l,,,~he~,~, id) < 8 

and hence d (G- loc r  o G , o ' ) <  8. This completes the proof of Lemma 3.1 and 

hence also of Theorem 2, under the assumption that (Y, ~)  satisfies the condition 
(A). 

We now assume that (~ is compact, acts transitively on Y and that there exists 

a continuous map t--) h, which maps I onto (~. We can assume that this map 

sends A onto Haar  measure on ~, say v [I0]. 

Let ~ />  0 be such that ] tl - t2] < 7/implies d(h 7~1h~, id) < 6, and let N E N with 
1/N < min 0/ /2,  y). 

There exists a measurable subset A of Z with / ~ ( A ) > 0 ,  such that A, 
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"" trN~-lA ~=0 f f ~ ) < - 7 .  ~rA, ., are pairwise disjoint, and such that 1 - /~  ( U N~-I , - ,  _ 

Since f(z, y) is uniformly continuous there exists a > 0 such that [z, - z21 < a 

implies ]f(zl, y ) -  f(z2, y)[ < e/5, for all y E Y. Let K~, K2, . . . ,  Ku be disjoint 

subsets of A each homeomorphic to a Cantor set such that ~ (K~) > 0, 1 _-< j _-< M, 

and 

,=, 211fll5N ~' 

and for every 1 =< j < M and 0 < i < N 2 -  1, diam (r < a. 

For every j let 0: Kj---> I be a continuous onto map for which 

Define 0 on U ~ ,  U ~-~o' tr'Kj by 

#(z) = 0(o'- 'z) if z ~ ~'Kj, 

and extend it to a continuous map t~: Z ~  L Put 

N - I  

0 (z) -- ~ ~ O(a'z) and 
i~O 

gz = ho(z). 

For every j, 1 _-< j _-< M, choose an arbitrary point zj E Kj. Let 

/*/2--1 

c--Y 2 
j - - I  i~O 

/.t (Kj) f~ f(tr  'z,, g - '(y ))dr (g), 

where v is Haar measure on ~. Since ~ acts transitively, c is a constant which 

does not depend on y. We claim that for every y E Y 

In fact, as above 

I f f(z,g:'(y))d~(z)-c[ <--~+ l f u~.,u,~:~-,~ % f(z, g 7(y))a~ (z) -  c J 

< + ~ f(tr'z,h~,~)(y))dg(z)-i~(Kj f(a~zj, g-~(y))du(g . 
j - I  

But 

= f, hr'(r)d (t) 
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and therefore we have 
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- ~j)fxj f(~r'z,,h- (z), /z ,~,(y)dlz 

I f f(z,g~'(Y))d~(z)-c[ <= 

5 ~ ]f(o"z, h ;,~,~,(y )) - f(cr'zs, h ol,,'~,(Y)) I d/x (Y). 
i -O j=1 

Since d i am(Kj )<  a this is 

< + < = /z U = - - < e .  
i=O 

This completes the proof of Theorem 2. 

4. Relative proximality and weak mixing 

A PROOF OF THEOREM 3. Fix Z0 E Z and let U, V be nonempty open subsets 

of Y: let e > 0  and put 

Eu, v.. = {T ~ b~ :lk diam (Tk(({Zo} • U) U ({zo} • V))) < e}. 

Clearly Eu.v., is an open subset of 5e~(~r). By our assumption there exists a finite 

covering {U~ x V,}~_I of Y x Y s.t. for every i and every t > 0  there exists h ~ 

with diam(h(U,  U V~))< e. Now every element T of ~ = A ~_1 I") 7-1 Eu~v,.ll, 
generates a flow (X, T) which is a skew extension of (Z, o') with the property that 

any pair of points in the fiber over z0 is proximal. Since (Z, ~r) is minimal this 

implies that the extension (X, T ) ~  (Z, or) is proximal. Thus we have to show 

that given a pair U, V of non-empty open sets with the property that for every 

8 > 0  there exists h ~ ~ with diam h ( U  U V ) <  O, and e > 0 ,  Eu.v., is dense in 

,,~ Let HE~Js,  then it suffices to show that H-~oo'oHEEu.v,, or that 

a E HEy. v.,H -I. Now 

HEu.v..H-' = { T E 5e~ (or): :1 k, diam (H- 'o  T k (({zo} x h~ o U) U ({zo} x h~ o V))) 

< t }  

D {T E Se~(tr): :lk, diam (T~({Zo} • h~o(U U V))) < 8} 

E h, oU, h.oV, a ~ 
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where z ---> h~ is the continuous map of Z into (g which defines H, and $ > 0 is 

such that d(y~, y~) < ~ implies d (h ~ly~, h ~-~y~) < e. It is therefore enough to show 

that o- ~ Et,. v. , .  

The following lemma will prove this. 

4.1. LEMMA. For every 8 > 0 there exists G E ~, such that 

(1)  8, 

(2) G-~otroG E Ev.v.,. 

PROOF. Let h i e  ~3 with diam(hi (U U V ) ) <  e and put ho= h~= id. Let 

t--* h, be a continuous extension to a map of I into f~. Let ~ />  0 be such that 

It1 - t2] < 7/ implies d(hT,~h~, id) < 6 and choose n E N such that 2/n < 8. Let A 

be a neighborhood of z0 such that A, irA, �9 �9 tr '-~A are pairwise disjoint. Let 

K C A  be homeomorphic to a Cantor set, and let 0: K --> I be a continuous onto 

map with #(zo)= �89 Define 0 on I,.J 72~o.~K by 0 ( z ) =  0(~r-~z) if z E o'~K; 

extend to all of Z and put 

n - - I  

o(z) = 

Put g, = her and G(z,  y) = (z, g~ (y)). It is easy to check that d(G -~ o or o G, o') < 

& Now we can choose k such that O(o'kZo) is so close to 1 that g2L~ o is close to the 

identity map. Since g,o = ho~,o) = h b G-~oo'oG ~ Eo.v.,. This completes the 

proofs of Lemma 4.1 and Theorem 3. 

A PROOF OF THEOREM 4. Let 

L = {((z, y,), (z, y~)): z E Z, y,, y2 ~ Y} C X  • X. 

Let U~, U~, V~, V~ be four non-empty open sets in X such that (U, x V,) 
L g ~ (i = 1, 2). Put 

E u,,v2.v,.v2 = {T E .~(cr):  3k, Tk(UI X VI) N (U2 x V2) N L ~  0}. 

Eu,.u=.v,.v2 is open and if {(Ui x V~)NL} is a basis for open sets in L, then 

= A i.~ E u~ uj. v, vj consists precisely of those elements T E ~ (or) for which the 

extension (X, T ) ~  (Z, or) is topologically weak mixing. Since for every G E ~ 

OP, u,,u~,v,.v~G -~ = P, ou,.ou~,ov,.ov~, all we have to show is that cr E Eu,.u~.v,,v2. 

The proof therefore will be completed with the proof of the following lemma. 

4.2. LFMMA. Given e > 0 there exists G E ~, such that 

(1) d(tr, G-~ocroG)< e, 



334 S. GLASNER AND B. WEISS Israel J. Math. 

(2) G-'oo 'oG ~ Eu,,u~,v,,v~. 

PROOF. Let U~, V[, U'2, V~' be open sets in Yandzx ,  z2EZpointssuchthat  

{z,} x U; C U~, {z,} x V; C V~ (i = 1, 2). Since (Y, ~)  is topologically weak mixing 

there exists h E ~ such that h(U~x V~)N (U~x V ; ) ~ O .  Let h�89 h, h0= h~= 

id and let t ~ h, be a continuous extension from I to ~. Let 7 />  0 be such that 

I t s -  t2[ < ~/ implies d(h~lh~,id)< e and let n ~ N with 2/n < r/. Let W be a 

neighbourhood of z~ for which W, trW,. . . , tr ' -~W, Jtr'z t,-z t 2j,-0 are pairwise 
disjoint. Let K C W be a Cantor set containing z~. Let 0: K --* I be a continuous 

onto map with 0(z~)= �89 Extend 0 to I,J ?2~cr'K as usual and let /~(z2)= 

0(o'z2) . . . . .  0(tr ' -~z2)=0. Now extend 0 to a continuous map 0: Z ~ L  

Define 

n - |  

o(z) = 

g~ = h0<~) and G(z, y ) =  (z, g,(y)). It is easy to check that G satisfies (1) and (2). 

The proofs of both Lemma 4.2 and Theorem 4 are completed. 

5. Topological weak mixing 

A PROOF oFTHEOREM 5. Let W~, i = 1, 2, 3, 4 be four non-empty open subsets 

of X and let 

Ew,.w~.w3.w, = {T E r 3k, TkW1N W3~ 0,  TkW2N W4# ~Y}. 

Again one easily checks that it suffices to show that R~ ~ Ew,. w2. w3. w,. Thus the 

proof will be completed with the proof of the following lemma. 

5.1. LE~tA. Given e > 0 there exists O E ~ ( X ) ,  such that 

(1) a(R ,O-'oRooO)<e, 
(2) G-~oR. oG EEw,,w2.w,.w,. 

PROOF. By the ergodicity of (Y, (~) there are hi, h2 E q3 such that 

hlzrW~tqTrW3~O and h2zrW2NzrW4gO, 

where 1r is the projection of X onto Y. Let (ti, y , )~  W~, i = 1,2,3,4, with 

h~(y~) = y3, h2(y2)= y4 and such that i ~ j  implies t i~ tj and y ,~  Yr. This can be 
done since Y does not reduce to a single point, and, being connected, each open 

set of Y is infinite. Let t -*g,  be a continuous map of I into ~ with gl = ht, 

g,~ = h2, gl = g�89 = go = id. Let V~, i = 1, 2, 3, 4, be pairwise disjoint neighbour- 
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hoods of y~ and let p~ be continuous functions on Y such that 0<p~ < 1, 

p,(y,) = 1 and Supp (p,) C V, 

Let ~? > 0 be such that d(y, )7) < n implies maxl~,m4[p,(y)- pj()~)[ < ~/4 and 

let 8 > 0 be such that [t~ - t2[ < 8 implies d(g~lgu, id) < min (~, e). Now choose 

an integer q for which l a - p / q [ < l / q 2 < 8 ~  for some integer p. Let c~, 

i = 1,2,3,4, be real numbers between 0 and 1 such that 

t~ + cl = 1/4q 

t2 + c2 = 3/4q 

t3 + c3 = 1/2q 

t4 + c,l = 1/q 

(mod 1) 

and define f (y)  = E4=~ c~p,(y). We now let 

G(t, y) = (t + f(y ), gq~,+/~,,)(y )). 

One can check that 

G -lo R~o G(t, y) = (t + a + / ( y ) -  f (y) ,  )7) 

where 

- 1  

Applying G to the points (t,,y,), i -- 1,2,3,4 we have 

G(tl, Yl) = (1/4q, Y3), G(t3, y3) = (1/2q, y3), 

6(t2, y2) = (3/4q, y4), G(t4, y,,) = 0 /q ,  Y,). 

There exists therefore a k such that R~(1/4q, y3) is close to (1/2q, y3) and 

R~(3/4q, y4) is close to (1/q, y4). Thus 

R~GW1N G W 3 ~ O  and R ~ G W 2 N  G W 4 ~ 1 0  

and (2) is satisfied. To check (1) we observe that 

IIq(t + a + f ( y ) ) -  q(t + f(Y))[I = Ilqa II < 8 

where I1" II denotes distance from the nearest integer. This implies that d(y, ~) < 
-1 17 where )7 = g~ . . . .  1~,)>gqc,+l~y>>(Y), and 
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' 4e 
If(Y)- f(~)l ~ ~ c,[p,(y)- P,(~)I < ' T  = e. 

i--1 

Therefore d(G-1oR,,oG, Ra)<e and (1) is satisfied by G 
completes the proof. 

as well. This 
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